
Data Management for
Knowledge Extraction

Demos Pavlou (demos.pavlou@11pets.com), Georgios Moullotos (giorgos.moullotos@11pets.com),
Kyriakos Stavrou (kyriakos.stavrou@11pets.com)

The requirements
11pets is the leading software ecosystem for
the pet industry offering solutions for pet
families, pet professionals and pet welfare
organizations. We offer web-based and
mobile application solutions that help the
different actors manage the data of their pets
and their day-to-day business needs.

Our large userbase and the wide usage of our
system, allowed us to collect a significant
volume of interdisciplinary data (>10M data
points) from different sectors of pet-care
including care at home, by veterinarians,
groomers, and shelters. By analyzing this pool
of data, we have published multiple industry
reports that drew the attention of key
enterprises. These reports, however, are only based on descriptive analysis of the data, that is, statistical
analysis with no knowledge extraction.

Pet-centric Vs Human Centric approach
Today’s systems are human-centric; they are built
around the pet professionals rather than the pets
and their families. The current approach is
equivalent to a national health system where each
doctor, hospital, school, etc. has its own, isolated
copy of each person’s data and is not able to share
it with anyone else. This data fragmentation makes
it impossible to provide optimal care as each entity
has just a subset of the information and nobody
can see the whole picture.

In a pet-centric system, there is one, consistent
copy of the pet’s data that includes all information
with each entity having a different view. This allows
structured and standardized sharing of information. Moving the center of pet-care from the service
providers to the pet and its family allows collaboration between each entity. Teamwork means more
information for professionals and efficiency in the identification and solution of issues providing the

mailto:demos.pavlou@11pets.com
mailto:giorgos.moullotos@11pets.com
mailto:kyriakos.stavrou@11pets.com
https://www.11pets.com/en/petcare/category/pet-industry-insights
https://www.11pets.com/en/petcare/category/pet-industry-insights

breakthrough the industry needs. Imagine a pet that had an allergic reaction while in the shelter and its
new vet is not aware. It is only in a pet-centric system that continuity is guaranteed and professionals have
access to all the necessary information.

11pets was the first to introduce the pet-centric approach to the industry and is today the most widely
used digital pet-care platform. The 11pets platform enables collaboration at every level considering all
privacy constraints. Professionals and families select which data they will share, with whom, and for how
long. Each time we release a new product and cover another sector of the industry, we enrich our data
not only with additional information but also, with additional parameters.

Knowledge extraction using pet-care data
Machine learning and knowledge/intelligence extraction are widely used today in a variety of areas,
including healthcare, security, transportation, risk detection, risk management, etc. [ref]. The field had
major contributions in the areas of self-driving cars, natural language translation, and healthcare [ref]. It
is a field that is growing rapidly and each day is applied to more real-life problems.

Recently, there have been several efforts on using data analysis for the pet industry [ref, ref]. However,
these studies cover only one pet-care sector at a time as their datasets are limited to it. As explained
already, modern pet-care involves different sectors that collaboratively care for each pet. The pet-centric
nature of the 11pets platform allows all these care providers to work together by centralizing the data
management. This, in turn, enables having composite, consistent and coherent interdisciplinary data from
different sectors, making it unique. An example of a study that is only enabled by this pet-centric approach
is the identification of the relationship between the care a pet receives at the groomer and any skin
allergies later treated by a veterinarian.

Role-Based Access Control (RBAC) in multitenant environments where a tenant can have multiple users
with different roles is not a sufficient solution for us, since we require to Service Level Agreements (SLA)
to control the features that are permitted by a user as well as finer control over actions because we want
to allow users to create additional roles on a per tenant basis, thus limiting the functionality they expose
to their employees based on their business needs.

The requirements are as follows:

• A user with a single account can have access to multiple projects, e.g., a shop and a groomer
• A user can have different roles in different projects
• A role can perform only a limited set of functions in the system and see only a limited amount of

information.
• A project can have only a subset of the functionality of the system, which is defined by the Service

Level Agreement that is mandated by the subscription type.

Database design
The Entity Relationship Diagram below shows the most important parts of the database design
implemented to satisfy the requirements. A Project (tenant) has multiple Users, and each User can belong
to a role for the specific project, allowing users to belong to multiple projects with different roles. A project

https://www.upgrad.com/blog/data-analytics-applications/
https://www.cio.com/article/3564694/healthcare-analytics-success-stories.html
https://dl.acm.org/doi/abs/10.1145/3305160.3305164
https://www.computerweekly.com/news/252490238/CDO-interview-Pets-at-Home-uses-data-analytics-to-further-petcare-ecosystem

has multiple SLAs based on the subscriptions of the tenant. Actions are used to give permissions on sub
processes of the system. These sub processes could be an API endpoint or a message handler. Actions are
grouped into Action Categories to compose features of the platform. A role can have multiple Action
Categories assigned. Finally, an Action Category can have UIModules, UIMenus and UIElements assigned
that are used by the front-end to construct the dashboard of the user based on the permissions he/she
has.

Administration of permissions
The system exposes all available Actions to the administrator. An Action could be the name of the request
or an arbitrary string depending on the conventions used in the project.

The administrator can group Actions into ActionCategories, for example the ActionCategory
ManageInvoices can include Actions RetrieveInvoices, RefundInvoices, GenerateReport, while the
ActionCategory ViewInvoices could include only RetrieveInvoices. Using ActionCategories the
administrator can create meaningful groups of permitted actions that meet the business needs for the
features offered by the platform.

An ActionCategory can be assigned to Roles. For example a Role Manager can have ManageInvoices while
a Role Employee can have access to ViewInvoices, or no access at all.

Roles can be used to assign fine-grained permissions to users for a project. When a User is assigned to a
project a Role must be provided.

A SaaS platform must have the ability to limit access to features based on the SLA of the subscription of a
tenant. Each SLA has a set of permitted actions assigned to it.

Consider a platform that offers a Basic and a Premium Plan. The Premium Plan allows the GenerateReport
Action while the Basic plan does not. We need to ensure that the Role Manager cannot GenerateReport
even though it is permitted by the Role. This can be achieved by calculating the intersection of the set of
permitted actions defined in the Role and the set of permitted actions assigned by the SLA.

Permission checks
Permissions are usually a cross-cutting concern for an application. In our case we use pipelines of filters
to enforce permissions. In projects where Mediator pattern is used, we register a pipeline step that for
every message we check if the permission exists, otherwise we return an error. In projects using ASP.Net
MVC we could define an
action filter that checks
based on the route or
method name.

Blocking actions in the
backend is sufficient to
guarantee that users cannot
perform undesired actions.
To provide a good User
Experience (UX) we need to
either hide elements on the
UI or be able to disable
them. When building a
Single Page Application
(SPA) the client-side code
needs to be aware of the
restrictions imposed by
permissions to adapt to what each user can do.

Pets.Platform.Permissions provides a solution that allows to calculate UI Menus, Routes and accessible UI
Elements based on the access level of the user. The backend should provide the client-side code with a
set of Routes, Menus and Elements that can be used to construct the correct dashboard. It is the
responsibility of the front-end to provide a good UX.

A UIModule has a
coarse scope and is
mainly used to guard
pages. The
UIModule is
assigned an
ActionCategory and
can only be accessed
if the user is
permitted based on
Role and SLA. The
Front-end can then
display the normal
page or a forbidden
message if the user
accesses the route.
In our dashboards
using react-router
we use the following
guard to avoid
registering them.

UIMenus can control the sidebar or navbar menus of the dashboard. The backend provides a tree of
MenuItems which can be used to build the correct menus for the user.

Finally, UI Elements can be used for find-grained control for buttons, or sections in the page. For example,
the GenerateReport button can be disabled or hidden if the user does not have the appropriate
permissions. A guard like the following could be used to ensure that an element is hidden.

Performance
Performance is
always a concern.
With a traffic of
thousands of users,
we need to reduce
the number of
round trips to the
database for
permission checks.
Permissions do not
change very often
which makes them a
good candidate for
caching. We
implemented a provider class that reads the required records from the database and caches them in
memory to perform the checks faster.

/11pets/documentation/-/wikis/uploads/86c431ffb527ec48b07cf52c58ab9cf0/image.png

Other concerns
Permissions can change over time, therefore the administrator should have the ability to reset and reload
the permissions while the system is running without having to restart all the services. To achieve this, a
message to reload permissions should be consumed by the service.
Other concerns for a platform are subscription changes of a tenant and user assignments to roles or
tenants. The microservice managing this should publish appropriate events that the permissions module
should consume to update the database and its caches.

Code
The source code of our solution can be found here

Acknowledgements
“This work was co-funded by the European Union and the Republic of Cyprus through the Research and
Innovation Foundation (Project: INNOVATE-COVID/0420/0018)”.

https://github.com/11pets/Pets.Platform.Permissions

